
SCIAENGINEER

Advanced Training Parameters

All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2015 SCIA nv. All rights reserved.

Table of contents

Preface	5
Beam on two supports	6
Cross-sections	11
General cross-section	
Type of Cross-sections	
Catalogue block	17
Plate on subsoil	21
Cellular beam	23
Beam with practical reinforcement	25
Ground-level	29
Layers	32
Steel hall	36
Plate with ribs	
Plate with ribs_1.esa	39
Plate with ribs_1.esa Plate with ribs_2.esa	
	42
Plate with ribs_2.esa	42 44
Plate with ribs_2.esa Tubular plates	42 44 50
Plate with ribs_2.esa Tubular plates Hollow core slab	42 44 50 64
Plate with ribs_2.esa Tubular plates Hollow core slab XML	42
Plate with ribs_2.esa Tubular plates Hollow core slab XML ODA	42 44
Plate with ribs_2.esa Tubular plates Hollow core slab XML ODA Batch optimizer	42
Plate with ribs_2.esa Tubular plates Hollow core slab XML ODA Batch optimizer Example 14: User blocks & ProjectTemplates	
Plate with ribs_2.esa Tubular plates Hollow core slab XML ODA Batch optimizer Example 14: User blocks & ProjectTemplates User blocks	
Plate with ribs_2.esa Tubular plates Hollow core slab XML ODA Batch optimizer Example 14: User blocks & ProjectTemplates User blocks Project templates	
Plate with ribs_2.esa Tubular plates Hollow core slab XML ODA Batch optimizer Example 14: User blocks & ProjectTemplates User blocks Project templates General parameterizing	

Preface

This workshop contains an assortment of examples on parameters.

What is the purpose of this functionality?

Suppose that a SCIA Engineer user handles nearly every day with the same type of structure.

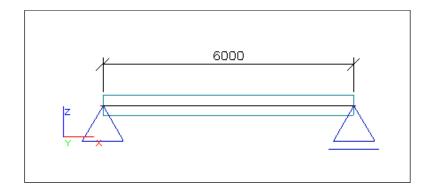
Only the dimensions, cross-sections, height, number of spans, ... differs in the different projects. For this, the option '**Parameters**' can be used.

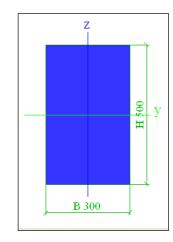
Every type -as mentioned above- can be parameterized.

The parameters are fully editable and when changed they may lead to a very straightforward modification of the calculated model.

What's more, a model defined by means of parameters can be saved as a template. When opened, the user is first asked to fill in the table with all the parameters present in the model. This may be effectively used for creation of simple "programs" for e.g. calculation of continuous beam, simple frame, etc.

The user has to create the structure only once. Then he/she has to define the parameters and save the structure as template. In the future, he/she just fills in the table with a few parameters and can immediately proceed to calculation and evaluation of results.


This leads to a huge reduction of the working hours and will be more effective.


Above this, this workshop contains also some extra's which can help the user to become more effective in working with SCIA Engineer:

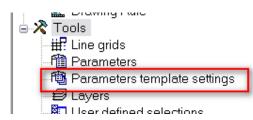
- XML: SCIA Engineer supports exporting and importing to/of this format.
- **ODA**: One dialog application
- **Batch optimizer**: The user can give a range of values to a parameter and the solution is also a range of results.
- **User blocks**: A project can be saved as a user block. Afterwards, this block can be imported in another project.
- **Project templates**: As mentioned before, the user can make a standard project which can be used for all the other projects.

Beam on two supports

A beam manufactured of C30/37 according to the EC-EN is supported on two ends. We will input parameters for the length and the cross-section dimensions.

Project data: - Construction type: Frame XZ
 - Project level advanced

Input support:


Method

• After activating the functionality parameters, you will see the function

∃ 💸 Tools 🖃 🛗 Parameters

- The parameters get following properties with the values:
- Length L: 10 m
- Width B: 300 mm
- Height H: 500 mm

• Next, go to:

Here the template tabs are made

🗖 Parameter se	et		X
🔎 🤮 🗶 💕 🔽	2 ≥ ● ≥ ■		
Geometry			
Name	Geometry		
Use 3D preview			
Info			
Picture	selected		
Icon			
Remove (picture, .			
Parameters			
B			
type	Css length		
unit	mm		
BH	Css length		
type unit	mm		
type	Length		
unit	m		
		Z Y X	
New Insert E	Edit Delete	·	Close

Remark: the introduction of the picture will be explained later.

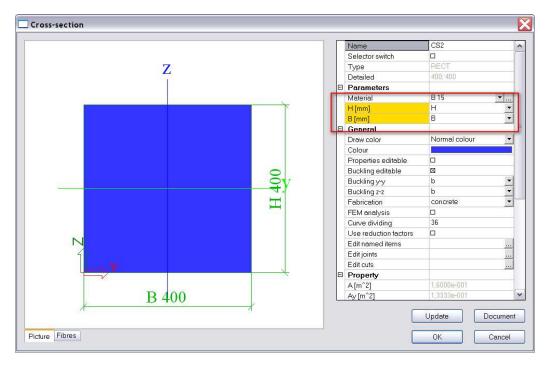
quantly you can use a new function:	piz o
augently you can use a new function.	

Project

Subsequently you can use a new function:

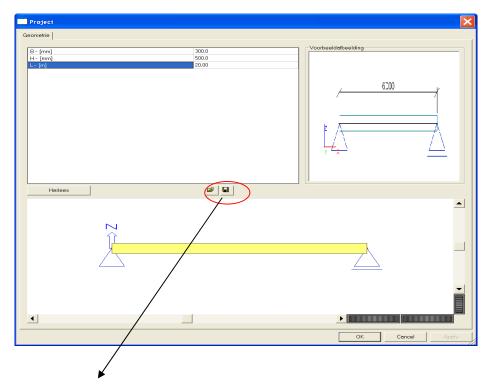
٠

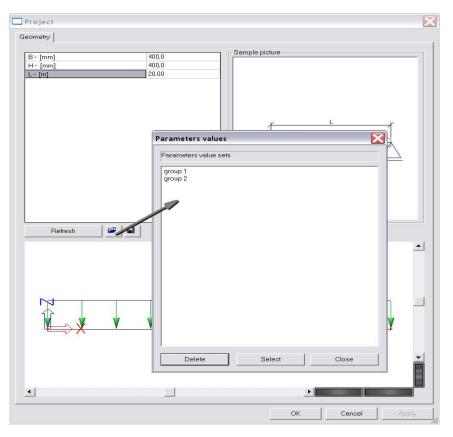
Here the values of the various parameters can be adapted.


□ ☞ 🖬 🗠 🕾 🔲 ?	voorbeeld 1 - ligger 💌	8 8 8 8 8 9 9 9 9 8 8 8	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	▐ᢪ▐▋▟▋▛▐?▏▋▀₽`₽₽
	11.12.13.11米中 电	, 00 And 1 ++ −t Et. And 1000 ∠21 AN 176		
Main		Project		
Project		Geometry		
Z Template dialogue		1		
- Ph Structure		B - [mm]	400,0	Sample picture
12 Load cases, Combinati	ions	H - [mm]	400.0	
E Calculation, Mesh		L- [m]	25.00	
F Steel				
Concrete				
Document				
B 🗐 Library				
Materials				10 L 10
In Cross-sections				
Catalogue blocks				
🕀 🗒 Structure, Analysis				
 B Steel Concrete, reinforcen 				
Subsoil, foundation	nem			
. Loads				
🗐 Fire Heat				
🕀 🎒 Heat Transfer				2
Drawing Rule				
B X Tools				N. 33
Parameters				
u 🗊		Refresh	<i>i</i>	
roperties				
Project data (1)	• Va			
icence name	Unknown			
lational code	NEN			
Itructure	Frame XZ	N		
lo. of nodes :				
lo. of beams :		17		
lo. of slabs :		مسلع		
lo. of used profiles :				
No. of load cases : No. of used materials :				
io. of used materials : .ast used annex				
uar aas'u dimex				_
				×
		•		
				OK Cancel Apply
				CancelApply
		Command line		

• The various parameters has to be attributed now to the cross-section and the length of the beam.

	operties	
No	ode (1)	▼ 10 10/ 0
	Name	K2
⊡[GCS coordinate	
	Coord X [m]	L
	Coord Z [m]	0,000
0	UCS coordinate	
	Coord ux [m]	10,000
	Coord uz [m]	0,000
8	Members	
	Member	S1
⊡	Data	
	Support in node	Sn2


 \rightarrow Length beam: X-coordinate of node K2:


\rightarrow Width & height profile:

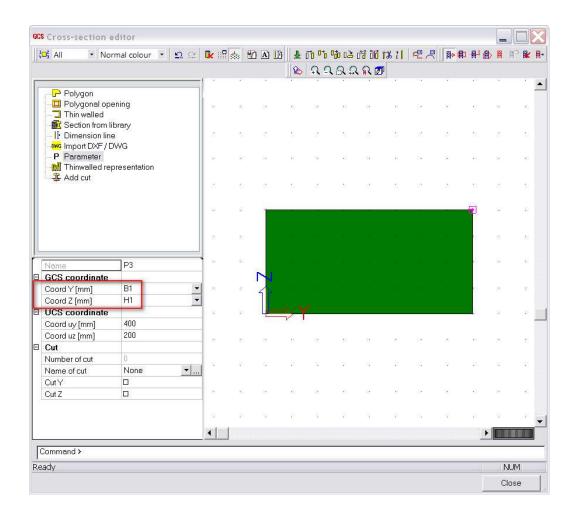
• Changing a parameter:

The value of the length L is adjusted of 10m to 20m.

If you use 'Store users- default settings', you can make various compositions which you can load afterwards:

Cross-sections

The same example will be used to explain the type of parameters for cross-sections. For this 'Cross-sections.esa' can be used. First of all the parameters for graphical cross-sections are explained. Next, the

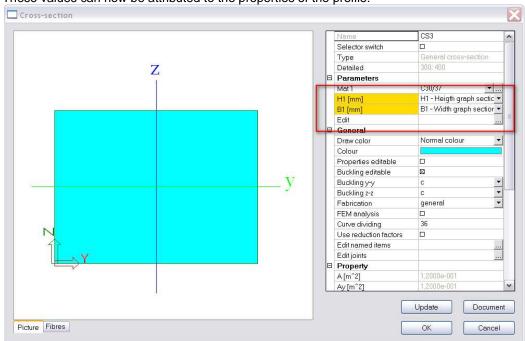

parameter for the type of cross-section will be shown.

General cross-section

- If the user decides to work with a graphical cross-section, the method of parameterizing is different from that of standard cross-sections.
- First of all parameters has to be created for the height en width of the cross-section.

⊐ <mark>3</mark> All	 Normal color 			- M/1 (A) [10 	tio t& t] _ 문 _ 🌬	
	Normal Color	at in the second second	INC 111 [22	ः जिस्ता स्वा	±11-1-10-1213 1 € 11-1-10-1213		
			r				
Thin w Section II: Dimer	onal opening ralled in from library ision line : DXF / DWG	P	aramete	rs			
M Thinw	alled representati	on 🗾 🔏	e 🖬 💺	All		• 🖓	
🖁 🖁 🖁 🖁	ut	H1			Name	B1	
		B1			Туре	Css length	-
					Description	coolonga	
					Evaluation	Value	-
					Value [mm]	400,0	
					Use range		
					Cochange		
Type (desc	ription) Gener	al cross-s					
General							
Buckling y-y	/ C						
Buckling z-z					Actions		1
Fabrication		al			Validate		>>>
Display fina		New	Edit	Delete			Close
Display		asic shape 💌					

• Next, the polygon can be introduced and after this, the parameters can be attributed to the Y and Z coordinates:


The difference with the parameters of a profile from a library is that here the parameters can be made in the cross-section editor itself.

 Above this, if the user wants to adapt these parameters, two parameters has to be created in 'Tools > Parameters'.
 Here, we can create the same parameters H1 and B1:

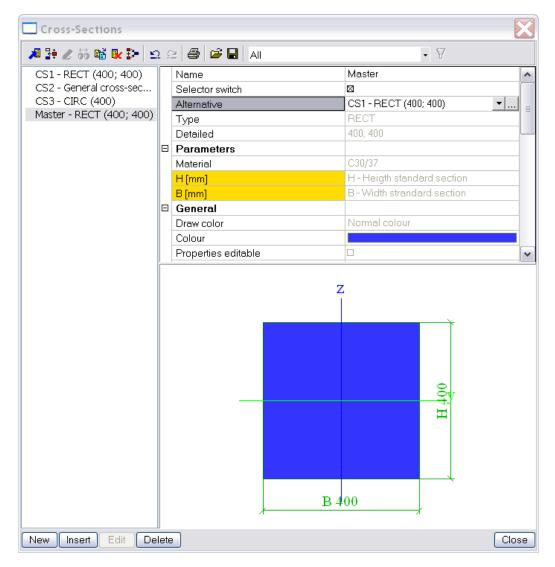
Parameters		
🔎 🗶 📸 🗽 All	• 7	
L - Length beam	Name	B1
B - Width strandard sec	Туре	Css length 🔹
H - Heigth standard sect	Description	Widht graph section
LC - Line load	Evaluation	Value 🔹
H1 - Heigth graph section B1 - Widht graph section	Value [mm]	400,0
	Use range	

Note:

It's very important that you give a good description to your parameters. On that way, it simplifies afterwards the input and the adaptation of the parameters.

• These values can now be attributed to the properties of the profile:

• To change these values, we can make a new tab in the 'Parameters template settings' and this will appear now in the 'Template dialogue':


Geometrie Graphical cross-section B1 - Width graph section [mm] 400,0	Project	
	Geometrie Graphical cross-section	
	B1 - Width graph section [mm]	400,0
H1 - Heigth graph section [mm] 300,0	H1 - Heigth graph section [mm]	300,0

Type of Cross-sections

In SCIA Engineer it's also possible to parameterize libraries. Examples here are: Materials, cross-sections, reinforcement, subsoils,... In this topic, we will explain it for the type of cross-sections. The other library types can be handled with the same principle.

Again, this will be explained by means of example 'Cross-sections.esa'.

- Three cross-sections are inserted in the project: CS1: RECT(400;400)
 CS2: Graphical cross-section
 CS3: CIRC (400)
- We define a 'master' cross-section. This cross-section is fictive and will be the parameter. For this, we copy arbitrarily CS1 and we call it 'Master'.
- For this master cross-section, the option 'Selector Switch' has to be checked and an Alternative profile can be choosen now:
- Creation of the parameter:

Without this option 'selector switch', we cannot use the parameter for the cross-section type.

• Go to 'Tools > Parameters' and the following parameter can be created:

🗖 Parameters 🛛 🔀						
🔎 🗶 📸 💺 🛛 Ali	• 7					
L - Length beam	Name	CS				
B - Width strandard sec	Туре	Library	-			
H - Heigth standard sect	Description	Cross-sections				
LC - Line load	Library	Cross-Sections	-			
H1 - Heigth graph section B1 - Width graph section CS - Cross-sections	Value	Master - RECT (400; 400)	-			
	Alternative		-			
C3 - Cross-sections	Select Alternatives					
	Alternative no. 1	CS1				
	Alternative no. 2	CS2				
	Alternative no. 3	CS3				
	Actions					
	Validate		>>>			
New Edit Delete			Close			

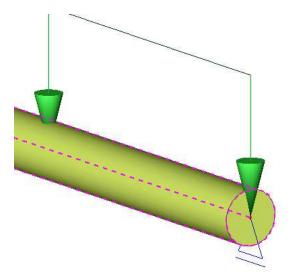
Type: Library

Library: Cross-sections

Value: Here the fictive 'master' cross-section can be input.

Alternative: One of the 3 alternatives can be choosen. This alternative will be the default profile.

Select Alternatives: The 3 alternatives can be inserted here

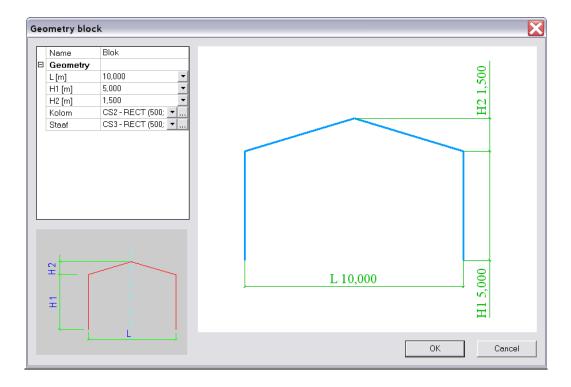

• Attribute this parameter to the cross-section type of the beam. Pay attention: The master profile becomes the parameter. But the content of this master will change after choosing another alternative:

🗉 🛄 Calculation, Mesn				
- 📴 Steel				
			1.1.1	
Document			12-22	
🐵 🕍 Drawing Tools				
🐵 🗐 Library				
🖨 💸 Tools		_		
Line grids				
- 🛍 Parameters				
🖓 Parameters template setti	ngs			
🗐 Layers				
User defined selections				
- 🔀 UCS				
E Cleaner				
-U? Coordinates info				
- 🎬 XML IO Document				
I Convert Steel Profile Db				
9			1	
_				
Properties		μ×		
Member (1)	•	Va V/ /		
Name	S1	^		
Туре	general (0)	-		
Analysis model	Standard	-		
CrossSection	Master - RECT (400; 400)	▼	0 1 🛓	🖢 🗶 📽 🥵 🖊 📑 🛃
Alpha	0	-	,	
Member system-line at	centre	-	Preview	
ez [mm]	0		🗈 🛄 📒	54 H C M M
LCS	standard	-		
FEM type	standard	-		

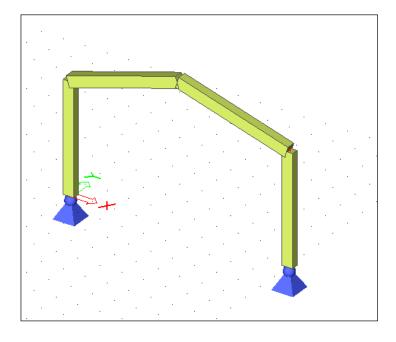
• After creating a new tab in 'Tools > Parameters Template settings', it appeared in the dialogue box of the 'Template Dialogue'. And again, this box can be used to change the cross-section type:

CS - Cross-sec	tions Ma	ster - R	ECT (400 Sample p	icture	
	🛃 🖨 🔒 All	/	• Y		
	CS1 - RECT (400: //C		Name	CS3	^
	CS2 - General cos-se	iC	Selector switch		
	CS3 - CIRC (400)		Туре	CIRC	
			Detailed	400	
		E	Parameters	C30/37	
			Material D [mm]	400	
			General	100	
			Draw color	Normal colour	•
			Colour		
			Properties editable		
			Buckling editable		
			Buckling y-y	b	~
Refres				z	
				y y de	

And this results into:

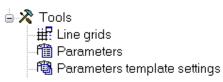


Catalogue block


In this example a catalogue block will be inserted. After the introduction of it, it will be parametrized.

- Project data: Construction type: Frame XYZ
 Project level : advanced
- Go to 'Structure > Advanced input > Catalogue blocks'.
 - Advanced Input

The first block in the menu 'Frame 2D' is choosen. We keep the standard configuration:



		🖨 🛣 Support
•	Input support:	🔤 📥 in node

Method:

First of all, the parameters will be created. Go to 'Tools > Parameters': •

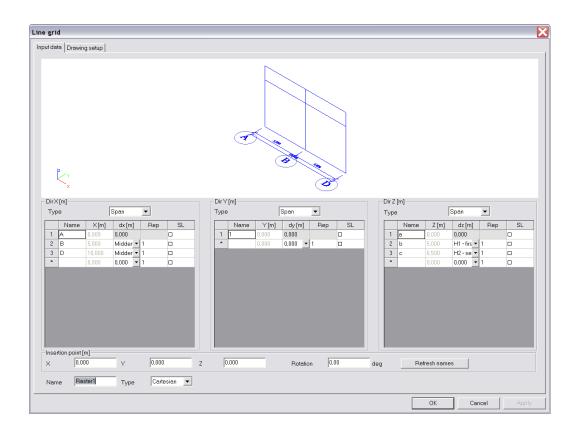
- The following properties are parameterized with a begin value of: .

 - Span L: 10 m
 Height H1: 5 m
 Height H2: 1,5 m
 Htot: H1 + H2

 - 5. Middle: L/2
 - 6. Rigidity support: $5*10^{-6}$

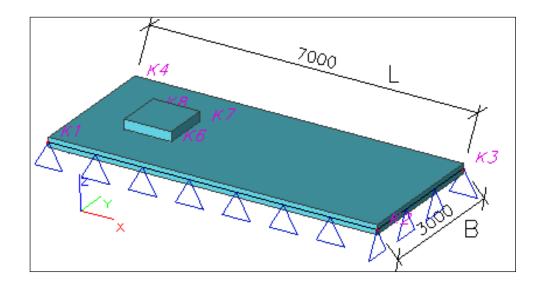
🗖 Parameters 🛛			
🔎 🏒 🛍 🗽 🗛		▼ 7	
Overspan - span	Name	Overspan	
H1 - first height	Туре	Length	
H2 - second height Htot - total height Midden - X middle R - Stiffness	Description	span	
	E∨aluation	Value	•
	Value [m]	10,00	
	Use range		

🛚 🧶 📸 🗽 🗛	V 7		
Overspan - span	Name	Htot	
H1 - first height	Туре	Length	
H2 - second height	Description	total height	
Htot - total height	Evaluation	Formula	
Midden - X middle R - Stiffiness	Formula	H1 + H2	
	Value [m]	6,50	
	Use range		

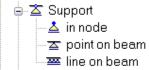

Parameters		
AI	▼	
Overspan - span	Name	R
H1 - first height	Туре	Point stiffness
H2 - second height	Description	Stiffness
Htot - total height	Evaluation	Value -
Midden - X middle	Value [MN/m]	8,0000e-001
R - Stiffness	Use range	

• When closing this window, the following question appears:

Scia En	gineer 🔀
?	Would you like to check the correctness of the formulae?
	Yes No


Click 'Yes' if formulae were used so they can be checked.

- Now the parameters are attributed to the various geometry-properties.
- Subsequently a line grid can be made:

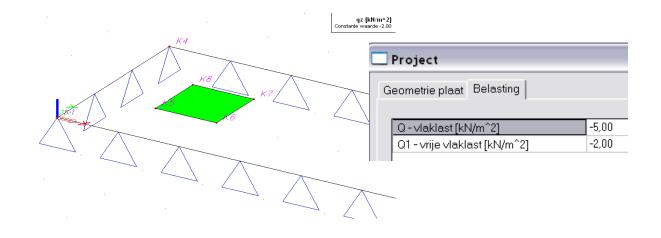


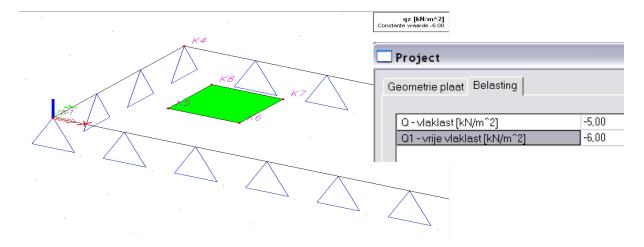
• The line grid can also obtain a parameter to adjust the view. This is possible through a binary parameter with a Boolean value (yes/no).

Plate on subsoil

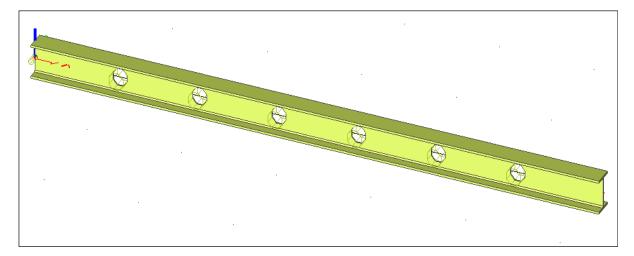
- Project data: Construction type: General XYZ
 Project level advanced
- Input support:

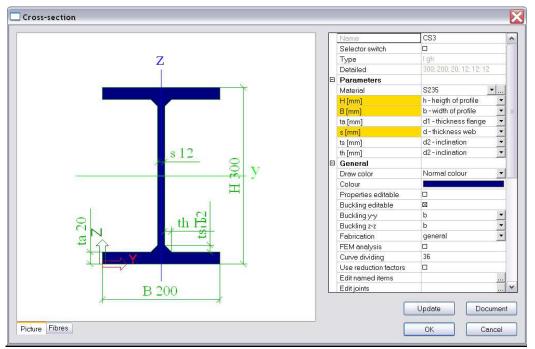
• Input subregion:


a 😂 🧐 2D member components

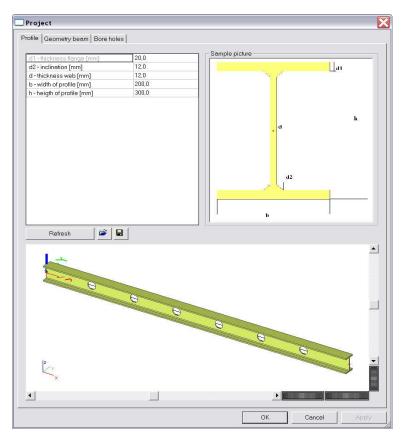

- 🕼 Subregion

- Load cases:
- LC1: Selfweight
- LC2: Permanent plane load q [kN/m^2]
- LC3: Free surface load on projected area: q [kN/m^2]


Method

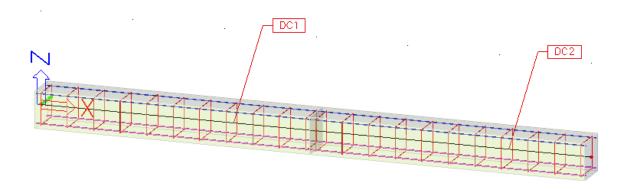

- The following parameters are applied:
- Length L: 7 m
- Width B: 3 m
- Permanent plane load: 5 kN/m^2
- Free plane load : 2 kN/m^2
- Thickness plate d: 200 mm
- Thickness subregion d1: 400 mm
- Adjusting the value of the free plane load:

Cellular beam


- Project data: Construction type: General XYZ
 Project level advanced
- Input opening through: 'Structure > 1D member > Modificator > Opening'.

Method

• The following parameters are attributed to the member:

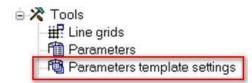

Parameters		
🥒 🗶 📸 🗽 📶		• 7
h - heigth of profile	Name	h
b - width of profile	Туре	Css length
d - thickness web	Description	heigth of profile
d1 - thickness flange d2 - inclination L - Length beam D - diameter borehole	Evaluation	Value 💌
	Value [mm]	300,0
	Use range	
x - position first borehole a - number of boreholes		

- Height profile h: 300 mm
- Width profile b: 200 mm
- Thickness web d: 12 mm
- Thickness flange d1: 20 mm
- fillet d2: 12 mm
- Length member L: 6 m
- Diameter bore hole D: 150 mm
- Position first bore hole x: 0,15
- Number of bore holes a: 6
- Next, these items are attributed to the structure.
- Subsequently the template settings and template dialog is made.

Beam with practical reinforcement

It's also possible to parameterize the reinforcement. This will be shown in following example.

- Project data:
 - Construction type: Frame XZ
 - Project level advanced
- Input through:
 - 🖨 🚾 Model data
 - le⊸≦ Support
- · Load cases:
 - LC1: Selfweight
 - LC2: Variable load: q [kN/m]
- Input practical reinforcement:


Ci Redes (without As)
 Mew reinforcement

Method

- Input of the following parameters with begin value:
- Height profile H: 400 mm
- Width profile B: 400 mm
- Span L1: 3m
- Span L2: 3m
- Total span Ltot: L1 + L2
- Variable line load Q: 15 kN/m
- Reinforcement diameter above db: 12 mm
- Reinforcement diameter below do: 16 mm
- Reinforcement diameter stirrups dstirrup: 8 mm

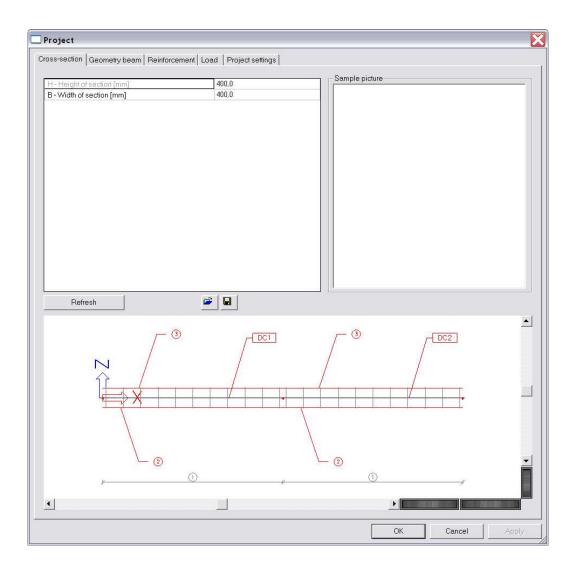
Remark: the reinforcement diameters can only be parameterized when using the practical reinforcement.

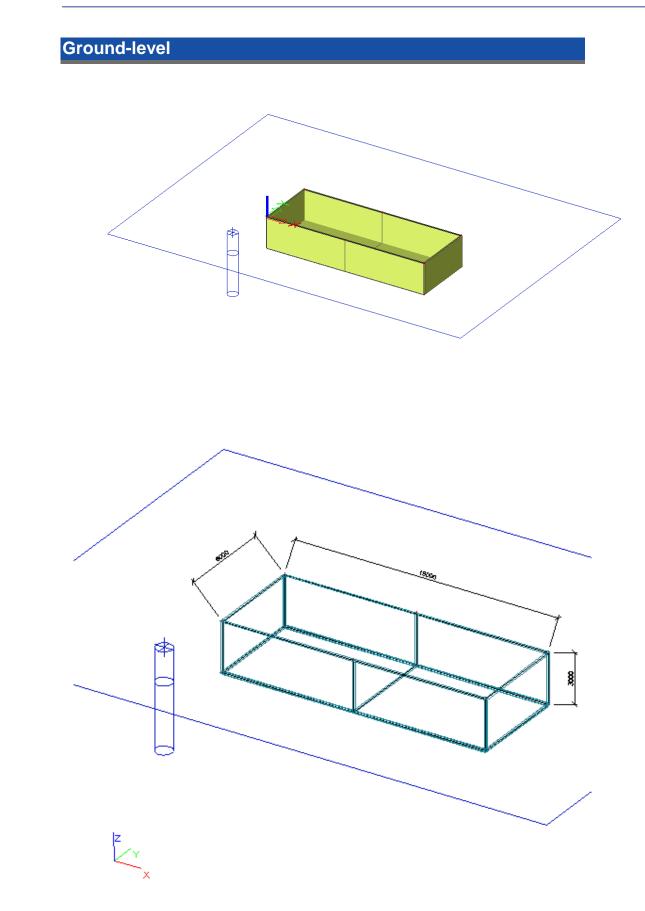
- Stirrup distance a: 0,3 m
- Group parameters through:

In the dialogue box of the parameter template settings, pictures can be attributed from the gallery:

Parameter set		
🏓 🏣 🏒 🛍 💺 🖄 S	🖂 i 😂 i 😂 🖬 i 📶	
Cross-section		
Geometry beam		
Reinforcement		
Load		
Name	Geometry beam	
Use 3D preview		
Info		
Picture		
lcon		
Parameters		
□ L1		

You get the best resolution if you choose the following properties during saving:

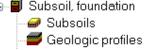

- .wmf
- 550 x 550
- Check through Template dialogue


Project		
Cross-section Geometry beam	Reinforcement Load	
H - Height of section [mm] 400,0		
B-Width of section [mm]	400,0	

- Afterwards, the entire project can be saved as a template. This by doing the following: save in the directory 'Esa xx > Templates'
- The project can now be opened as a template and adjusted:

Select New Project	
New Project User templates	
Templates Connect Steel	beam with practical rei SCIA-ONLINE\My Documents\ESA80\templates\beam with practical
	OK Cancel

• After opening this template, a dialog box with the entered parameters appears. If desired, particular properties can be adjusted here.

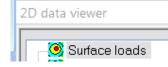


- Project data:
 - Construction type: General XYZ
 - Project level advanced
- Functionalities :
 - Subsoil - Soil loads
 - Parameters
- Input support through:

sport in ough.			
🚊 🚧 Model data			
🖨 🛣 Support			
🖳 📥 in node			
🚽 🚾 line on 2D member edge			
🔤 🛲 surface (el.foundation)			

Input geological profile and subsoil through:
 Subsoil, foundation

🗔 Subsoils		
🥕 🤮 🗶 🛍 🔛 🗠 🧉	3 🖙 🗃 🖬 🛛 🗛	 ▼
Sub1	Name	Sand/Clean/Loose
Sand/Clean/Loose	Selector switch	
	C1x[kN/m^3]	1,0000e+002
	C1y [kN/m^3]	1,0000e+002
	C1z	Flexible
	Stiffness [kN/m^3]	1,0000e+004
	C2x[kN/m]	0,0000e+000
🗔 Geolo	gic profiles	
×1 💱 🖉	📸 🗽 🗠 🖨 🎜 🖬 🗛	 ▼
GP1		
	1,000	Thickness = 2.00[m], Edef = 20.00[kN/m^2], Weight = Thickness = 4.00[m], Edef = 25.00[kN/m^2], Weight =
New In	sert Edit Delete	Close


- Load cases:
- SelfweightWater pressure
- Soil pressure

Method

- Parameter:
- Height bore hole profile h: -1 m, restriction between 0 m and -4 m

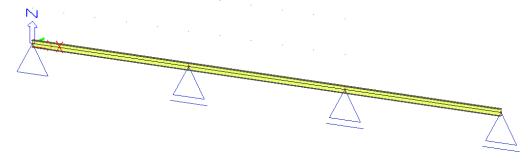
🛚 🗶 📸 🔜 🗛		▼ 7		
h - ground level		Name	h	
B - subsoil		Туре	Length	
G - geologic profile		Description	ground level	
M - Materials M1 - Materials		E∨aluation	Value	
		Value [m]	-1,00	
		Use range		
	Ξ	Range		
		Mimum Evaluation	Value	
		Minimum [m]	-4,00	
		Maximum Evaluation	Value	
		Maximum [m]	0,00	

• Test of input data through:

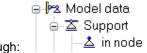
Layers

In this example the number of spans will be varied. This can be done by means of a truc. The basic principle is: every beam belongs to a layer.

Above this a layer has two properties: Activity and Structural type (also Drawing model).


The principle is as follows:

A layer that is not active will not be displayed on the screen.


A layer that has the structural type will not be calculated.

This means that if you put a beam into a layer that is both non-active as in the structural model, it will not be visible and above this, it will not be calculated.

On that way we can make parameters for the properties of the layers.

- Project data:
- Construction type: Frame XZ
- Project level advanced
- Functionalities Parameters

Input support through:

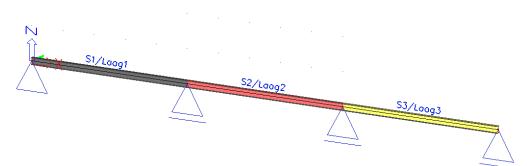
Method

- The number of members is varied. This is done by means of Parameterizing the activity and the type of model (analysis/structural)
- Input parameters:
 - Number of members N: 3 Remark: The maximal number of beams is the number of beams that had been introduced in the project.
 - 2. Activity of the layers : \rightarrow Boolean
 - L1: formula N>=1
 - L2: formula N>=2
 - L3: formula N>=3

- 3. Model type of the layers: \rightarrow Boolean
 - C1: formula not (L1)
 - C2: formula not (L2)
 - C3: formula not (L3)

Example:

N=2:


➔ L1 and L2: true, L3 is false

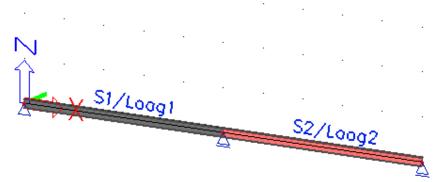
→ C1 and C2: false, C3 is true

This means that Layer 1 and 2 are visible and not in the structural model. Layer 3 will not be displayed and will be in the drawing model (not in the analysis model).

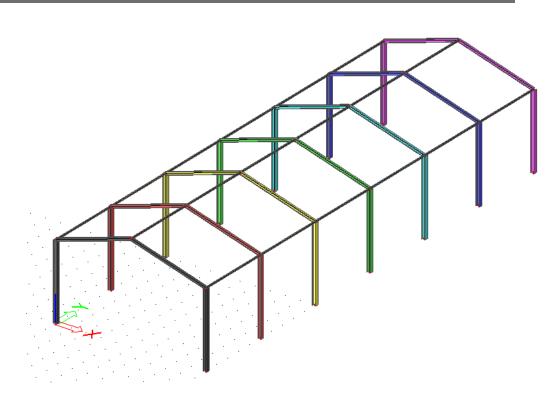
	X
v 7	
Name	N
Туре	Integer
Description	Number of beams
Evaluation	Value 🗸
Value	2
Use range	
	Name Type Description Evaluation Value

- Grouping the parameters through: Tools > Parameters template settings
- Subsequently a parameter is attributed to the various layers:

Layers				
🔎 🕃 🗶 📸 🔜 🗛 🗛		▼ 7		
Laag1	L1 - Activity 1	Name	Laag1	
Laag2	L2 - Activity 2	Comment		
Laag3	L3 - Activity 3	Colour		
		Structural model only	C1 - CAD1	-
		Current used activity	L1 - Activity 1	-

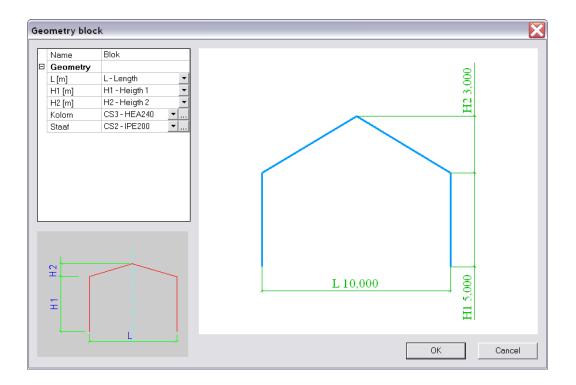

- Variation number of member through the template dialogue
- Use the activity toggle

•



Project	×
Aantal staven	
N - Number of beams 2	Sample picture
Refresh 🗳 🖬	
NI	
S1/Loog1 S	S2/Loog2 S3/Loog3
	OK Cancel Apply

This gives as result:



Steel hall

In this example, the number of spans will be parameterized. The same principle with the layers as in the previous example will be used.

- Project data:
 - Construction type: Frame XYZ Project level advanced
- **Functionalities Parameters** •
- Input support through: Support > nodal support.
- Input catalogue block with parameters H1, H2 and L

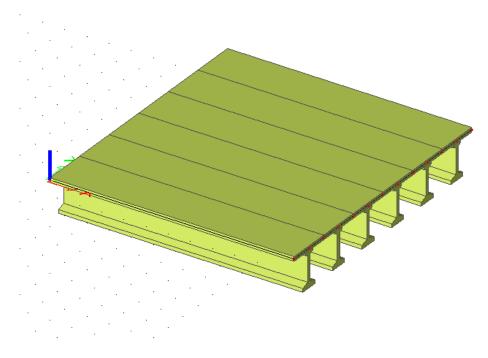
Method

- The number of frames is varied, ranging from 1 up to and including 7, through the binary parameters for the model type and the activity.
- Applying the following parameters:
 - o Height H1: 5 m
 - o Height H2: 1,5 m
 - Total Height Htot: H1 + H2
 - o Length L: 10 m
 - Number of frames NS: 7
 - o Frame distance S: 5 m
 - Frame distance 1 t/m 5 (S1/5): S*1 ... S*5
 - Total frame distance S6: S*(NS-1)
 - Activity layers B1 t/m B7: NS >=1 .. NS>=7
 - Construction model layers A1 t/m A7: not (B1) ... not (B7)

At which the following parameter types are used:

- o Height, length and frame distance : length
- o Number of frames: integer
- o Activity and type of model layers: boolean

- Now the parameters can be attributed to the properties of the model: •
 - Layers -

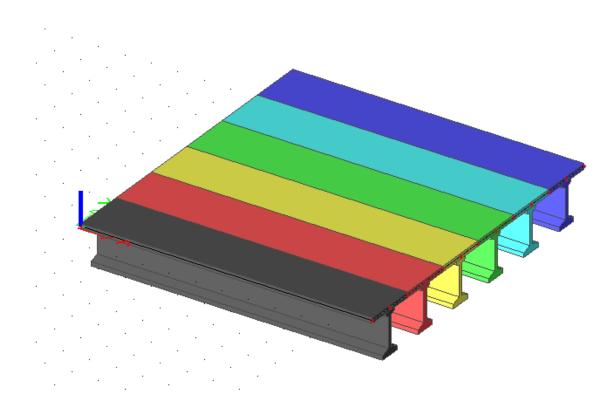

	▼ 7	
31 - activity 1	Name	Layer7
32 - activity 2	Comment	
3 - activity 3	Colour	
34 - activity 4	Structural model only	A6-CAD6 🗸
'		B7 - activity 7 🔹
36 - activity 6		
37 - activity 7		
	 1 - activity 1 2 - activity 2 3 - activity 3 3 - activity 4 3 - activity 5 3 - activity 6 3 - activity 7 	Bit - activity 1 Name 32 - activity 2 Comment 33 - activity 3 Colour 34 - activity 4 Structural model only 35 - activity 5 Current used activity 36 - activity 6 Structural model only

- -
- Geometry properties of the catalogue block Coordinate Y of the nodes of the model: parameter frame distance _

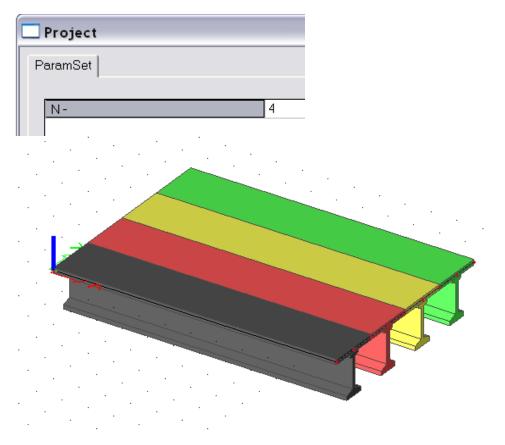
Plate with ribs

Two types of parameterized plate with ribs are shown here. The previous principle of the properties of the layers is used here.

Plate with ribs_1.esa


- In the first case the number of ribs is dependent on the width of the plate. The offset of the ribs and the distance between several ribs remains the same in each case.
- To obtain this, we divide the plate into several parts. The number of the parts is equal to the maximal number of ribs.
- In this case we the maximal number of ribs is 6. So, a parameter N with type 'integer' is made with standard value 6.
- Other parameters are: A1...A6: Boolean Formula: N>=1...6

C1...C6: Boolean Formula: not(A1...A6)


 Afterwards, these parameters can be attributed to the properties of the 6 created layers:

🛯 🤮 🗶 🖬 🔛 🖨	All	▼ 7		
Laag1	A1-0	Name	Laag_6	
Laag_2	A2 - 0	Comment		
Laag_3	A3 - O	Colour		
Laag_4	A4 - O	Structural model only	C6-0	
Laag_5	A5 - O	Current used activity	A6-0	

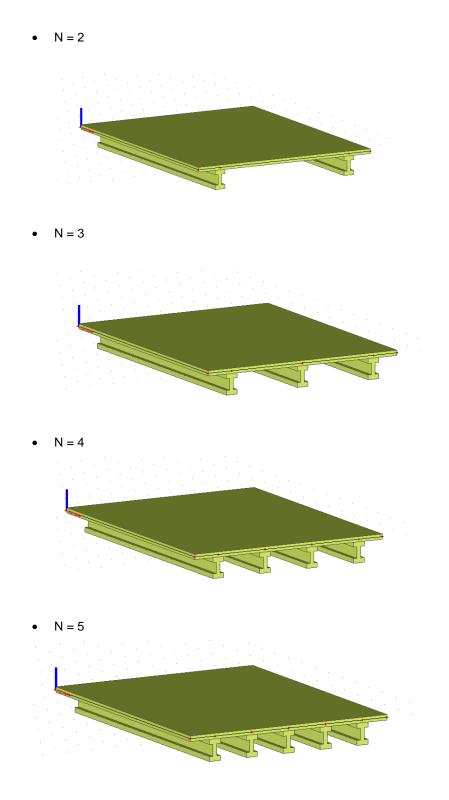
The plate with the connected rib can now be input in the respective layer. In the 'view parameters for all', the colour can be set on 'colour by layer'. This is practical to verify if each rib is in the correct layer:

• After creating a group in the 'parameters template settings', the number of ribs can be adapted in the Template dialogue:

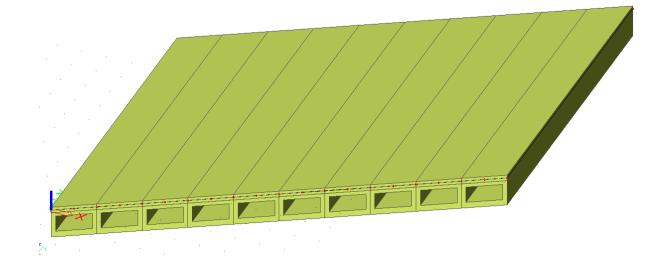
Plate with ribs_2.esa

In this case, the offset between the outer ribs and the end of the plate remain constant. The distance between the inner ribs is always regular.

This is shown in the understanding example.


Originally, a plate with 5 ribs is created. Afterwards, the ribs are input in layers and the x-coordinates are parameterized.

• First of al the parameter for the number of ribs is created: This can be an integer value between the range of 2 to 5.


Parameters				X
🔎 🥖 📸 🗽 🛛 All		▼ 7		
× - offset first beam		Name	N	
B - width plate		Туре	Integer	
×1 - B-×	_	Description		
N		Evaluation	Value	•
A1		Value	2	
A2 A3		Use range		
A4		Range		
A5		Mimum Evaluation	Value	•
C1		Minimum	2	
C2		Maximum Evaluation	Value	•
C3		Maximum	5	
C4		L		
C5				
↓ ∨2				

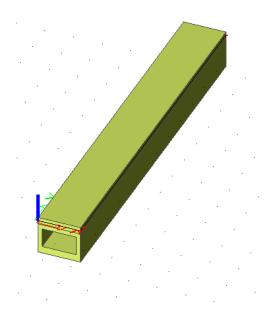
- The offset coordinates of the outer ribs are:
- x for the first ribs
- B- x for the last rib, with B the parameter for the width of the plate
- The 3 inner ribs get the following coordinates:
- $x^2 = x + ((B 2x)/(N 1))$
- -x3 = x2 + ((B-2x)/(N-1))
- x4 = x3 + ((B-2x)/(N-1))
- As in the previous examples, parameters A1..A5 and C1..C5 are created for the properties of the layers
- To finish this, the ribs are attributed to the correct layers.

• When changing the number N in the template dialogue, we get the following results:

Tubular plates

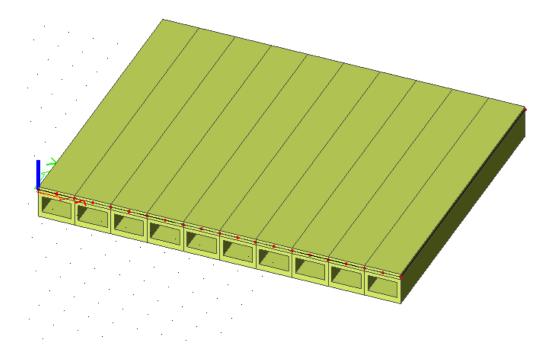
- Project data:
 - Construction type: General XYZ
 - Project level advanced
 - Functionalities Parameters
 - Input channels as ribs: Plate rib

<u>Method</u>


•

- The principle is as follows: The plate is divided into different subplates. The reason for this is if the plate will shorten, also a rib will disappear. By making different little plates, this can be solved.
 - Making the parameters that determine the geometry properties of the plate and rib:
 - width profile b: 1480 mm
 - height profile h: 1100 mm
 - height upper flange h1: 250 mm
 - height lower flange h2: 160 mm
 - thickness web t: 140 mm
 - thickness plate d: =h1
 - length partial panel: =b
 - angle of fillet plate alpha: 30°
 - total length plate Ltot: 12 m

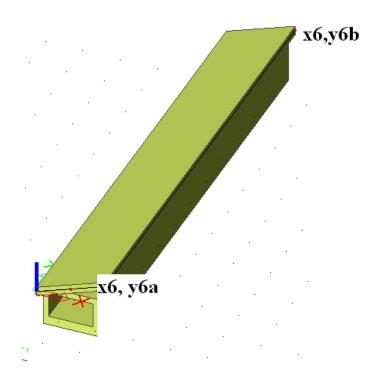
• These parameters are attributed to the channel


- Input of 1 plate (as an element of the whole plate)
- Input of the plate rib with effective width b

• Use of dummy members, e.g. circular profile with diameter 5mm so the rib and member can be connected by a common node. Without these dummy beams, the ribs will not follow the plate after changing the dimensions of the plate.

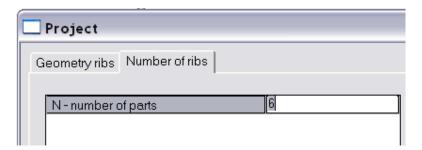
Connect nodes/edges to members!

Input other plates through "more copies": Multicopy Connect selected nodes 9 • Number of copies ✓ Insert the very last copy Copy additional data $\overline{\mathbf{v}}$ Distance vector How to define the distance ? $\mathbf{\nabla}$ between two copies Define distance by cursor 🔘 from original to the last copy 0,000 х m How to define the rotation ? У m between two copies z m 🔘 from original to the last copy Rotation Rotation around current UCS 0,00 deg \mathbf{n} O distance vector 0,00 deg ry 0,00 rz deq ОK Cancel

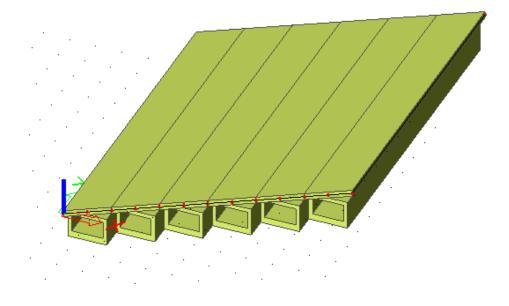


 An angle alpha of 30° is entered as parameter. With this, the x- and y-coordinates of the vertices of the partial plates can be entered:

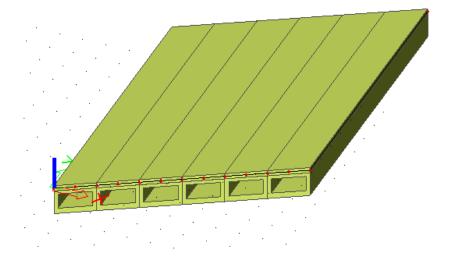
Example:


Partial plate 6:

- x-coordinate x6: = b*6
- y-coordinate y6a: tg (alpha) * x6
- y-coordinate y6b: tg(alpha)*x6+ Ltot

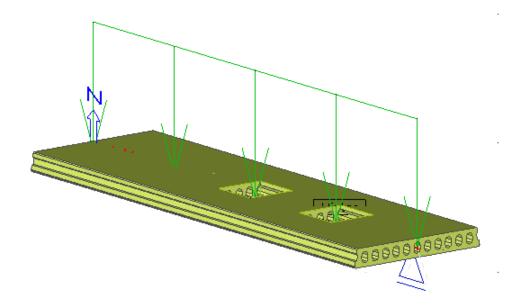


This way, an inclined plate is obtained.


- Adjusting the number of partial plates/ribs:
 - Parameter for the number of parts: N (< = 10)
 - Parameter L1..10: They determine the activity of the various layers Vb. L6: boolean with formula N>=6
 - Parameter C1..10: they determine the type of model of the various layers Vb. C6: boolean with formula not(L6)
- Making the different parameter template and adjusting the number of parts to e.g. 6 through the template dialog:

→ Analysis model:

→ Structural model


Type Hoek[deg] × Y	Standaard Vast
X	Vast
	Vast
Y Y	Vast
Z	Verend
Stijfheid Z [MN/m]	R-in yrichting
Rx	Vast
Ry By	Vast
Rz	Vast
Standaard afm. [m]	0,200
🗉 Geometrie	
Systeem	GCS

Pr	operties	μ×
S	upport in node (1)	▼ ¼ V/ Ø
	Name	Sn11
	Туре	Standard 🗾 💌
	Angle [deg]	
	X	Rigid 🗾
	Y	Rigid 🗾 💌
	Z	Flexible 🔹
	Stiffness Z [MN/m]	R - in yrichting
	Rx	Rigid 🗾 💌
	Ry	Rigid 🗾 💌
	Rz	Rigid 🗾 💌
	Default size [m]	0,200
	Node	K14
Ξ	Geometry	
	System	GCS 🗾

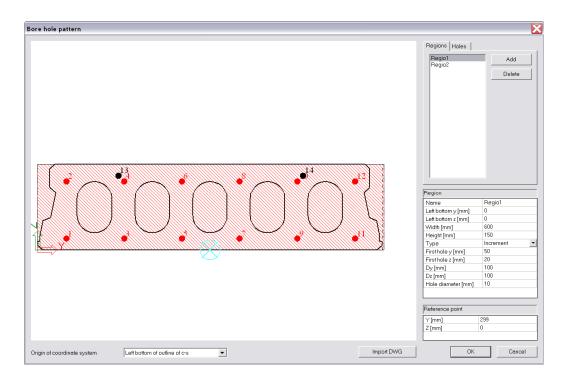
Hollow core slab

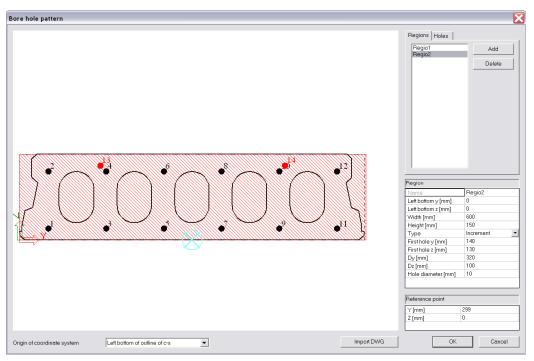
A practical use of parameters is in the case of hollow core slabs. In this example several functionalities are applied:

- prestress
- building stages
- TDA
- Parameters

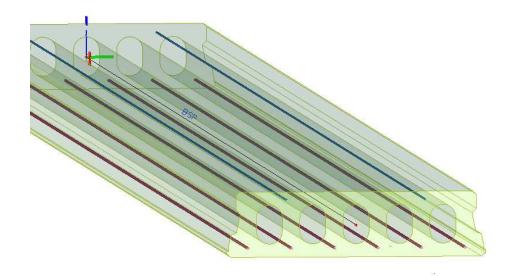
- Project data:
 - Construction type: Frame XZ
- Project level advanced
- Functionalities
- Parameters
- Concrete: fire resistance
- Prestress:
 - Advanced
 - Hollow core slab
- Model: Construction stages
- Span: 6.2 m
- Material type: concrete C25/30
 - The hollow core slab is entered by means of a dwg

Method


1. Entering a cross-section


The outline and the opening are selected alternately, after which they can be imported through 'import selection'.

ayers	Entity types	Selection mode	, Import sele	
0	Block	Polygonal openings 💌	Clear selection	rcied
DEFPOINTS	✓ Circle		Import a	
WD-MTL	Ine Ine Ine Ine Ine Ine Ine Ine	Scale	1 Cancel	î
	✓ Polyline	Sizes		
	☑ Text	704×360		
		Connect single curves to close	d polygons	
			u polygons	
Enable all Disable	e all Enable all Disab	ble all Select curves	Connect curves	
.×		VS 15/60		
30		VS 15/60	•	
	60 40		•	
90 30	$\nabla \cap C$		•	
120 30	$\nabla \cap C$), (), ()		
¹⁵⁰				
¹⁵⁰				
¹²⁰) , () , ()		


2. Inserting the prestressed tendons

Subsequently the prestressed tendons are entered: Go to the concrete menu > Prestress – strand pattern: 2 regions are now made for the bore hole pattern.

The initial stress of the prestressed tendons is 1250 Mpa.

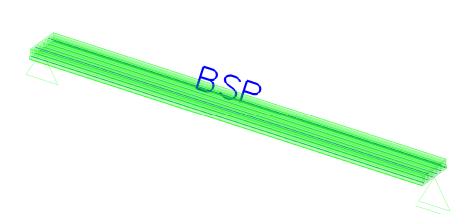
3. Inserting the supports

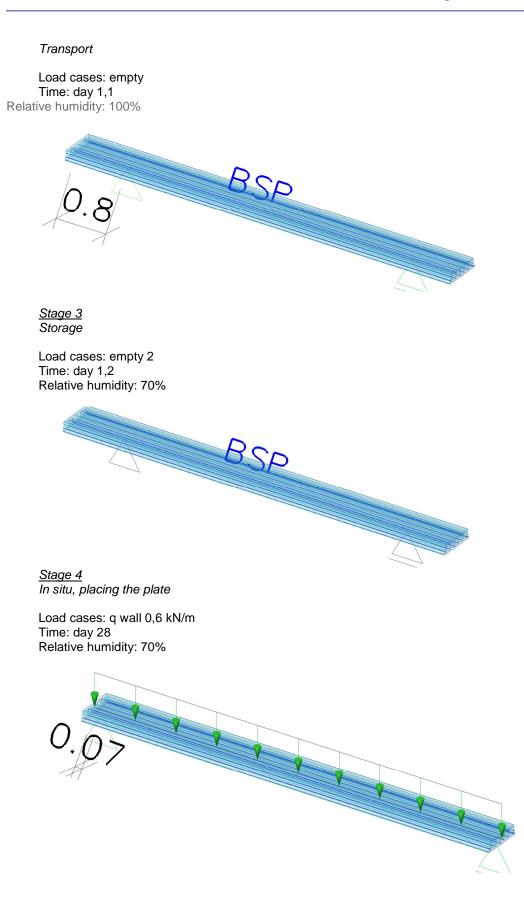
- point load on node, at begin and end node of the member
- point load on member: on0,07 and 6,13 m
- point load on member: on 0,8 and 5,4 m

4. Making the load cases

🗖 Load cases 🛛				
🔎 🤮 🗶 🕄	- 🗠 🗠 😂 😂 🖬 🛛 All	• 8		
stage 1	Name	stage 7		
stage 1b	Description			
stage 2	Action type	Permanent		
stage 3	LoadGroup	LG1 💌 .		
stage 4	Load type	Standard		
stage 5 stage 6				
stage 7				
stage 6a				

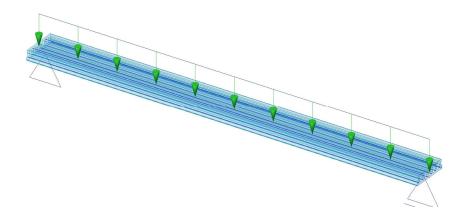
- Selfweight member
- Prestress 1250 Mpa
- Stage 2: empty (permanent)
- Stage 3: empty (permanent)
- Stage 4: line load on member 0,6 kN/m (permanent)


- Stage 5: line load on member 1,2 kN/m (permanent)
- Stage 6: line load on member 1,2 kN/m (variable long term)
- Stage 7: empty (permanent)


5. Inserting the construction stages

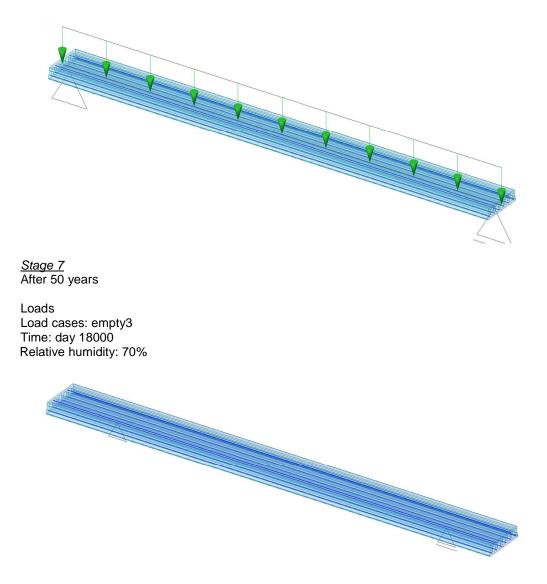
Туре	Time analysis	▼ .
Load factors		
Permanent (long-term) load case		
Gamma min [-]	0,00	
Gamma max [-]	1,00	
Prestressed load cases		
Gamma min [-]	0,00	
Gamma max [-]	1,00	
Long-term part of variable load		
Factor Psi [-]	0,30	
TDA		
Load factors for generated loadcases		
gamma-creep min [-]	1,00	
gamma-creep max [-]	1,00	
Time - History		
Number of subintervals	1,0	
Ambient moisture [%]	70,00	
Automatic calculation of subintervals	🗆 no	
🗆 Local time axis		
Time of coating	-1.00	L.

<u>Stage 1</u> Prestress and selfweight of the member


Load cases: presstress + selfweight Time: day 1 Relative humidity: 100%

Casting of the coating

Load cases: 1.2 kN/m Time: day 50 Relative humidity: 70%



Construction stages			
🎜 🏣 🍠 💺 🗠 😂	A	I 🖌	γ
ST1 ST2		Name Order of stage	ST5 5
ST3 ST4 ST5		Description Global time [day] Number of subintervals	T5-fase 5
ST6 ST7	-	Ambient humidity Last construction stage	RV1-RV2
	Ξ	Load case permanent or long-te:	
		Load case Gamma min [-] Gamma max [-]	fase 5 0,00 1,00
	⊡	Load case prestress	
		Load case	None 💌
		Type of generated combinations	Code independent 🗾
	A	tions	
		ariable load cases	>>>
New Insert Edit De	lete	•	Close

<u>Stage 6</u> Service

Load cases: long termVar 1.2 kN/m \rightarrow will be used as long term load. Here it is important to pay attention to the duration of the load case, sc 'long'.

Time: day 100 Relative humidity: 70%

6. Inserting the parameters

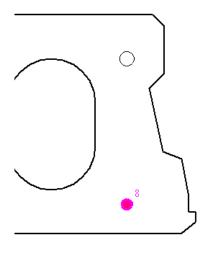
Length hollow core slab:
 Type: length
 Evaluation: value: 5,25 m

- *Height hollow core slab:* Type: cross-section length Evaluation: value: 150 mm

- Location support on member: Type: length Evaluation: formula: resp. Length member - 0,07 and length member - 0,8

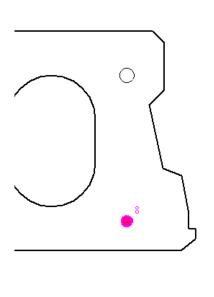
- Parameters general cross-section:

Type: cross-section length


Evaluation: value

(examples: width to first opening, width opening, width between the openings,...)

Initial stress:


Type: stress

Evaluation: 1200 Mpa

- **Anchorage length:** Type: length Value: 1m

•	Y1770C-6,0-I	0
0	Y1670C-6,9-I	0
•	Y1670C-7,0-I	0
۰	Y1670C-7 5-I	n, 🚩
<		>
Stre	engeigenschap	Geometrie
	Naam	Streng8
	Id	8
	Groep	1
	Materiaal	Y1670C- 💌
	Positie in gat	Centrum 📃 💌
	Vast	
	Onthechtings	Geen 💌
	Volgorde van	1 💌
	Manier van v	Туре 3 💌
	Correctiespa	spi - initiele s 🔻
-	Duur van Cor	300,00
	Initiële spann	spi - initiele s 💌
-	Wigzetting [6,00
	Verankerings	1,00 💌
	Afstand tuss	0,500
Ξ	Positie	
	Y [mm]	252
	Z [mm]	20

Line loads: -

Type: line load Value:

- -
- wall: -0,5 kN/m casting coating: -1,75 kN/m long term var: -1,75 kN/m -
- -

Time of prestressing -

Type: time (history) Value: 1 day

Construction stages			
利 🤮 🗶 🖄 😂 🎒	A	۶ ۲	7
ST1	Ī	Name	ST1
ST2		Order of stage	1
ST3		Description	
ST4 <	-	Global time [day]	T1 - time of stressing
ST5 ST6		Number of subintervals	1
ST7		Ambient humidity	RV-stage 1
517		Last construction stage	
	Ξ	Load case permanent or long-te	
		Load case	fase1b 💌
		Gamma min [-]	0,00
		Gamma max [-]	1,00
		Load case prestress	
		Load case	fase 1 💌
		Type of generated combinations	Code independent 🔹
1			

- T2 up to and including T7:

Type: time (history) Value: 1,1; 1,2; 28; 50; 100; 18000

- Relative humidity

Type: relative humidity: Value: 70 and 100%

- Cross-section type

Type: library

Method: make a 'master' cross-section (copy of the original cross-section) and use the option 'possible alternative'.

Subsequently it can be used with parameters as follows:

Name	CS
Туре	Library
Description	section
Library	Cross-Sections
Value	master - General cross-section
Alternative	CS2 - Grafische doorsnede
Select Alternatives	
Alternative no. 1	master
Alternative no. 2	VS150
Alternative no. 3	VS151
Alternative no. 4	CS2

- Strand pattern

Type: library

Method: idem as the cross-section type. Make various strand patterns and copy a type as a master case.

Name	BGP	٦
Туре	Library	
Description	bore hole pattern	
Library	Sectional strand pattern	•
Value	master ·	•
Alternative	SSP	•
Select Alternatives		
Alternative no. 1	SSP	
Alternative no. 2	SSP1	

Analogous possibilities for the type of library are: materials, stressing beds, bore hole patterns, ...

Other possibilities to parameterize: Moment of casting, Moment of releasing the casting

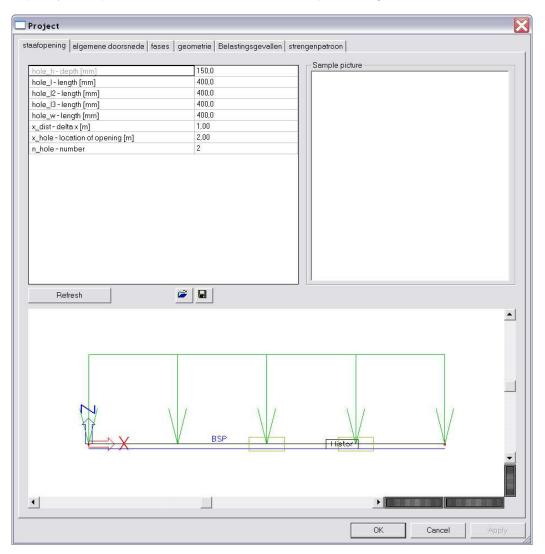
7. Making openings in de hollow core slab

Two openings are made, of which a number of values are parameterized, sc:

- delta x: Type: length Value: 1m

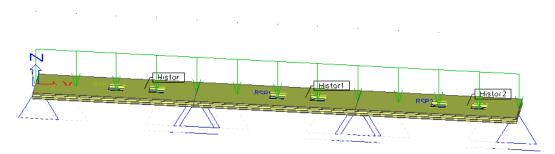
- *Width, length and depth opening:* Type: cross-section length Value: 500 and 150 mm

- **x_offset:** Type: cross-section length Formula: -width/2


- **x_hole:** Type: length Value: 2,1 m

- *n_hole:* Type: integer Value: 2

Member1D opening					\mathbf{X}
	Г	Name	OM1		~
		Shape	Rectangular	•	
ez	Ξ	Rectangular			
·		B [mm]	hole_w - length	•	
$\beta \times \alpha$		H [mm]	hole_w-length	-	
		Alpha [deg]	0,00		
		Position y/z			
The state of the s		Alignment	Тор	-	
		Perp.offset [mm]	p_offset - perpendicular offset	•	
		Orientation	Z	-	
(n -1) x ∆x		Beta [deg]	0,00		
x		Depth	Partial	-	
		Depth value [mm]	hole_h - depth	•	
	Ξ	Calculation			
		Use for analysis and design	🗆 no		
		Number of FE	4,0	•	
		Member	S1		
		Geometry			
		Position x [m]	x_hole - location of opening	-	
		Coord definition	Abco		
			ОК С	ancel	


8. Using the template dialog

Subsequently these parameters can be divided and the template dialog can be used:

9. Different number of spans

Now the number of spans can be adjusted by means of copying the hollow core slab and to divide it into layers. For example: 3 elements.

Subsequently the following parameters can be used:

- N: number of spans Type: integer Value: 3

- Activities of the various layers:

Type: boolean Evaluation: formula A1: N>=1 A2: N>=2 A3: N>=3

- Construction type of the various layers:

Type: boolean Evaluation: formula C1: not(A1) C2: not(A2) C3: not(A3)

XML

SCIA Engineer allows for the exchange of data with third-party applications through the popular and powerful XML format. Moreover, XML format can be used to develop tailormade applications that use SCIA Engineer as a "hidden" engine working on the background and performing calculations of company-specific problems.

The XML file editor is very similar to the Document of SCIA Engineer. The principle is that the user defines tables describing individual entities of the SCIA Engineer projects and there order. This table-form can be easily previewed (it is in fact identical to the standard SCIA Engineer document). When ready, the final XML file contents can be transformed into the real XML format through the export function.

• Take example 8 again: steel frame.esa

ZML Input / Output Document	14			_ 🗆 🔀
DOC-Default	n 🛯 🖪 d	🛛 🗌 🖂 🖼 🧊 default 🛛 🔽 default	v 0 🗗	
Parameters	1. Parar	neters		~
	Name	UniqueID	Туре	Evaluatic
	H1	{5A0826EE-1820-4458-9086-31781F326D32}	Length	Value
	H2	{B4D32D70-36E7-4512-B1D1-A7193ADD5A18}	Length	Value
New Close	Htot	{9472EB82-54C7-4D48-AE09-E570F4D24E66}	Length	Formula
Name Parameters Caption Parameters	L	{676B5CB5-B211-44F2-B74B-3C965301B56A}	Length	Value
Visible yes Prefer one page Filter All	NS	{8E25ED26-1A55-4CF6-8BD4-5353B39CA8F1}	Integer	Value
	S	{4A3FD994-A184-40F7-A7A0-D97607CA2AC6}	Length	Value
	S1	{DCF03F45-0036-49A9-AB9E-24D0723A0605}	Length	Formula
	S2	{3A20EBF8-F846-42E7-A9FE-7894DA6257D9}	Length	Formula
Actions >>>	📕 Ready [en]	K	l	> ~

Export to XML:

```
- <obj id="4" nm="L">
   <p0 v="L" />
   <p1 v="{676B5CB5-B211-44F2-B74B-3C965301B56A}" />
   <p2 v="3" t="Length" />
   <p3 v="0" t="Value" />
   <p5 v="0" />
   <p6 v="Length" />
 - <p7 t="">
   - <h>
      <h0 t="Real" />
     </h>
    <row id="0">
      <p0 v="10" />
     </row>
   </p7>
 - <p8 t="">
   - <h>
      <h0 t="R@|"
                   1>
     </h>
```

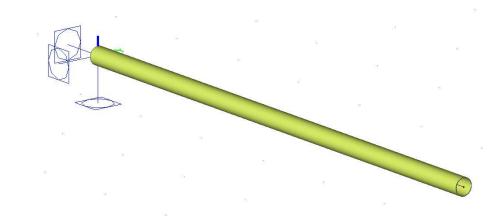
 Adjusting the parameter L: 10 → 20 Remark: For this purpose, it's necessary that the XML-document is opened in a text-file, for example: notepad.

```
<p5 v="0"/>
  <p6 v="Length"/>
<p7 t="">
  <h>
  <h0 t="Real "/>
  </h>
  row id="0">
  <p0 v="20"/>
  </row>
  </p7>
  <p8 t="">
  <h>
  <h0 t="Real "/>
  </h>
  <row id="0">
  <p0 v="-1000000"/>
  </row>
  </p8>
```

• Regenerate the project through 'File > Update > XML file'. You will see that the structure has been changed now.

ODA

Oda is the abbreviation of 'One dialog application'. It's also called the SCIA engineer Template.


It can be used for following type of projects:

c	Choose type of new project 🛛 🔀										
	Concrete Beam - Standard Zeman	Concrete Beam - Advanced	Concrete Slab	MixBeam	Parametric Project	Batch optimizer					
	Parametric Project	:					DK Incel				

In this workshop the options 'Parametric project' and 'Batch optimizer' will be used. The Batch optimizer will be explained in the next example.

The main principle of ODA is as follows:

- In SCIA Engineer a project is made, eventually with parameters and with document, and saved as a template.
- After this, SCIA Engineer has to be closed. It's not possible to open the same project in ODA and in SCIA Engineer at the same time.
- Now, ODA can be opened and the user has to choose the type of project.
- In the most used case 'parametric project', the user can change the value of the parameters and the result is a document with all the added tables.
- This is shown in the following model.

- Project data: Construction type: General XYZ Project level advanced Material: concrete C20/25
- Functionalities Parameters
- Load cases:
 - Selfweight
 - Variable line load: 1 kN/m
- Combinations: UGT and BGT
- Document input:
 - Nodes
 - Load cases
 - Combinations
 - Internal forces: My
 - Deformations: uz
- Parameters:
 - Diameter cross-section: 200 mm
 - Thickness cross-section: 5mm

Method

- Save this project, e.g. Oda.Esa, in the folder 'Templates' and close (if this is not performed, a conflict will arise when opening ODA).
- then open the program SCIA ODA:

• The following dialog box appears:

с	hoose type of r	new project				X
		∎+= ₩₩		7		
	Concrete Beam - Standard	Concrete Beam - Advanced	Concrete Slab	MixBeam	Parametric Project	Batch optimizer
	Zeman					
	Concrete Beam - S	itandard				ОК
						Cancel

Choose the option 'Parametric project'.

• The following dialogue box appears:

Select New Project								
User Templates								
Templates Connect Steel	beam with practical rei	DDA						
	ОК	Cancel						

- Now the various steps can be re-run and possibly adjusted:

- - -

PI	ofiel	
	D - diameter [mm]	200,0
	t-dikte [mm]	8,0

Image: Standard Image: Standard Image: Standard Image: Standard Product Mode (knopp) Mode (knopp) Product Constructors (constructors (constru	Scia Engineer T	emplate - ODA									
Constrained	e <u>E</u> dit <u>V</u> iew <u>S</u> et	up <u>H</u> elp									
Image: Standard Image: Standard Image: Standard Image: Standard Product Mode (knopp) Mode (knopp) Product Constructors (constructors (constru	🛎 🖬 💁 🖻 🖡	3? 🕅 🛱 🗊 🗋									
Image: controls	ocument										
Window Strategy Worker Strategy Product Parameters Product Parameters Product Parameters Product Product	nmands 📮 🗙	DOC-Standaard 🖌 🗸	BU BA I		📑 defaul	t -	W		e ^p		
Actions Refersh of document >>> Refersh of foictures >>> Load settings >>> Save settings >>>	Project settings Profiel Geometry	Standaard Node (knopen) Combinations (Comb Combinations (Comb Combinations (Comb Parameters Combinations on me Combinations on templ Combinations on templ Combinatio	1. Knov Naam K1 2. Belar Naam BG1 BG2 3. Com Naam UGT GGT 4. Para Naam D	Coordinaat X Imi 0,000 stinggevaller Omschrijving Lijnlast Dinaties Type EN-UGT Fundar EN-UGT Fundar EN-UGT Fundar EN-UGT Fundar	Project Onderda M Omschif Auteur Coördfinaa Im O Actie type Permanent Variabe Belaa Belaa Belaa Bela Bega Evalua Waarde	el infine	Belastingtype Eigen gewicht Statisch 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	am Coordin Im Spec Standaard	aat X (6,000	[m] O) Duur	0,000 0,000
Beforeshort pictures >>> Combinations: UGT N Vy Vz Mx My Mz Load settings >>> BG Stanf css dx N Vy Vz Mx My Mz Stave settings >>> USE% COULT THE OPERATION COULT THE OPERATION COULT THE OPERATION COULT THE OPERATION Could The Operation <td< td=""><td></td><td></td><td>Lineaire b</td><td>oerek en ing, Extree</td><td></td><td>ysteem : Hoofd</td><td>ł</td><td></td><td></td><td></td><td></td></td<>			Lineaire b	oerek en ing, Extree		ysteem : Hoofd	ł				
Save settings >>>		Refresh of pictures >>> Load settings >>>	Combinat BG	ies : UGT							
Save template >>> a Ready [n]		Save settings >>>	LICTA	01 001					2.00	0.00	

• Finally the following document is obtained in ODA after an automatic calculation:

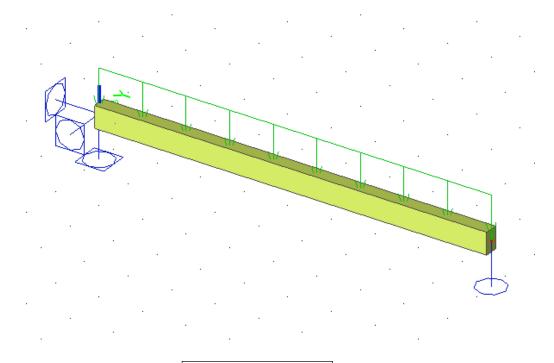
Note:

So, it's not possible to adapt the geometry on the graphical screen like we do in SCIA Engineer.

In ODA, only the inserted parameters can be adapted.

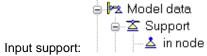
It's also not possible to add new tables in the document. ODA uses the document from the template.

Batch optimizer


The batch optimizer is a special function of ODA. First of all a parametric project is made in SCIA Engineer.

Then an input and output file has to be made in XML. Subsequently they can be read in ODA.

A begin and end value of the parameter can be filled in and an iteration step to be performed. The results are the values of the desired output parameter.


Example:

A beam on two supports is created in SCIA Engineer. The line load is parameterized. In ODA the moment My will be asked for a certain range of this parameter.

Project data: - Construction type: Frame XYZ
 - Project level advanced

<u>Method</u>

•

- The line load is parameterized with a begin value of -5 kN/m
- Subsequently go to 'Tools > XML IO document' and export an input and output file:

Input file:

XML Input / Output Document									
DOC-Standaard	~	Þ 🖳 🖪 ð	📔 🕂 🖬 🛍 🖬 📑 default 💽 🖳 🙀 default	▼ ■ #					
E 🔶 Standaard E Parameter	rs	1. Parar	I. Parameters						
		Name	UniqueID	Туре	Evaluation	Use range			
		P_	{1C5AFDAB-6476-45C8-AF12-2F77DDC47BC2}	Line load	Value	false			
New Close									
	ndaard								
Embed docu									
Language Eng Pictures align Left	glish (Uni 👻								

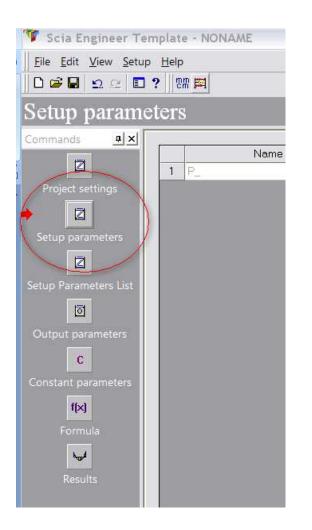
XML Input / Ou	utput Docu	ument								
DOC-Standaard	✓	N U B	S THU	w 🖬 📑	default	V 💷 🕇	default	v 🛛 🗝		
E Indeard	rs		meters							
		Name			Uniquell	D		Туре	Evaluation	Use range
Ì	Documen	t Expert						*	×	false -
New Close	File	V III I	D:\Scia.Esa PT\	Projecten Per	theorie\Paran	neters\Projec	ts parameters\inj	put_batch opt.xm	· ·	
Description Sta	Name and		KML file (usable	for data excha	ange with other	r systems)			~	
Embed docu D Language En	👚 XML	-								
Pictures align Le Header templ de		en after export								
Edit header te		code scription								
Title page tem **** Edit title page t										
Footer template de Edit footer tem										
First page nu 1										
First chapter n 1 Chapters num All										
Chapters capti All										
	English (U	United States) [1	252]				L	Export !	Cancel	
										2.
Actions										
Refresh of docum Load settings	>>>									
Save settings	>>>						GI			
Save template	>>>	Naam					<	un		>

Output file:

DOC-Standaard	×		8611	HO 🗹 🖬 🥛	default		- 🕲	🛄 default 🗸			
⊟ 🔶 Standaa [♥] Inter				krachten in							
			Table								
		BG	Staaf	css	dx	N	Vy	Vz	Mx	My	Mz
< <u> </u>	>	BG1	S1	CS1 - RECT	1e-006	0	0	28112.52734	0	-50512.75	0
New Close		BG1	S1	CS1 - RECT	9	0	0	-16887.47266	0	0	0
Name Caption	Interne krach Internal force	BG1	S1	CS1 - RECT	5.4	0	0	1112.527344	0	28394.90039	0
Visible	Ves		1								
Prefer one pa	0	1									
Selection	All 🔻										
Type of loads	Load cases 🕶										
Load cases	BG1 🔹										
Filter	No 💌										
Structure	Initial 💌										
Values	My 🝷										
System	Principal 🔹										
Extreme	Global 💌										
Section	All 🔻										

XML Input / Output Doc	ument					🗠 🔀
DOC-Standaard	N U 55	IIH 🛛 🖬 🖬 🥛 default	🗸 🚇 🛄 default	v • •		
Standaard Parameters	1. Paran	neters		(manuf		
	Name	Unic	uelD	Туре	Evaluation	Use range
Docume	nt Export				X	false
Header templ de Edit header te Title page tem Edit title page tem Footer template de Edit footer tem First page nu 1 First page tem 1 Chapters num All Chapters capti All	2 XM	Scia.Esa PT\Projecten Per theorie\ L file (usable for data exchange wit	· · · · · · · · · · · · · · · · · · ·	s\output_batch optx	ml v	
Actions Refresh of docum >>> Load settings >>> Save settings >>> Save template >>>	Naam		٢	bii		3

• This project can now be opened in ODA. For this, you choose the option 'Batch optimizer'.


с	hoose type of r	new project				🔀
	Concrete Beam - Standard Zeman	Concrete Beam - Advanced	Concrete Slab	MixBeam	Parametric Project	optimizer
	Name					OK Cancel

• Subsequently a dialog box appears in which the Esa project and both XML files have to be collected:

Project settings
Files
Scia Engineer project file
D:\Scia.Esa PT\Projecten Per theorie\Parameters\Projects param 彦
Parameters source From user XML file
Input parameters
XMLIO Document DOC
Parameters file
D:\Scia.Esa PT\Projecten Per theorie\Parameters\Projects param
Output parameters
XMLIO Document DOC
Parameters file
D:\Scia.Esa PT\Projecten Per theorie\Parameters\Projects param
Type of analysis
Autodesign calculation
Pack files with project

• If an optimisation was used in the Esa project, it can be taken into account here by selecting the option 'optimisation calculation'.

You can ask for the results for a number of values of the parameter. Here the parameter 'line load on member' can be used. A begin value of -5 and an end value of -10 can be taken with an iteration step 1.

🖇 Scia Engineer Template - NONAME								
Ele Edit View Setup Help								
Setup parame	Setup parameters							
Commands 📮 🗙								
-	Name	Unit	Start value	End value	Step			
	1 P_	kN/m	-20	-5	2			

The values of the output XML file that have to be evaluated, can be marked. The values for My_max and My_min are checked.

D 📽 🖬 💁 💷 🔲	1010-0				
Output param	iete	rs			
Commands 🔍 🔍	D	eep refresh			
		Class	Esa Name	Name	Evalua
Project settings	1	Interne krachten in staaf	dx	dx_max	
	2	and a second sec	dx	dx_min	0
	3		N	N_max	0
Setup parameters	4		N	 N_min	
	5		Vy	Vy_max	0
Setup Parameters List	6		Vy	Vy_min	0
	7		Vz	Vz_max	0
Ø	8		Vz	∨z_min	
Output parameters	9		Mx	Mx_max	0
С	10		Mx	Mx_min	
	11		My	My_max	
Constant parameters	12		My	My_min	
f(×)	13		Mz	Mz_max	
Formula	14		Mz	Mz_min	

Possibly constant values and formulae can be inserted. They will be taken into account in the result table.

Finally you can go to the results, where a calculation is performed for the various line loads. This is performed in various iteration steps, which are executed independently from each other.

<u>E</u> dit <u>V</u> iew <u>S</u> etup <u>H</u> elp			
🖬 🕰 🖸 ? 🛛 🕅 🥅			
ults			
inds 🚚 🗙			
Evport regults	to Excel		
File type CSV	Export		
ect settings	✓ Open after export		
		2016 (2017A) (201	With the strength As
parameters	P_[kN/m]	My_max [kNm]	My_min [kNm]
-20,00		113,58	-202,05
2 -18,00		102,22	-181,85
Parameters List 3 -16.00		90,86	-161.64
4 -14,00 5 -12,00		79,51 68,15	-141,44
		56,79	-121,23 -101,03
7 0.00		45,43	-101,03
C 8 -6,00		45,43	-00.02 -60,62
0 -0,00		34,07	-60,62
int parameters			
f(x) Formula			
Formula			
Formula			

The result is as follows:

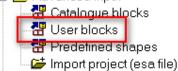
Example 14: User blocks & ProjectTemplates

User blocks

SCIA Engineer enables the user to make a library of his/her projects that are used over and over again. These projects may be at any time included into a newly created project or appended to an earlier created and currently edited project.

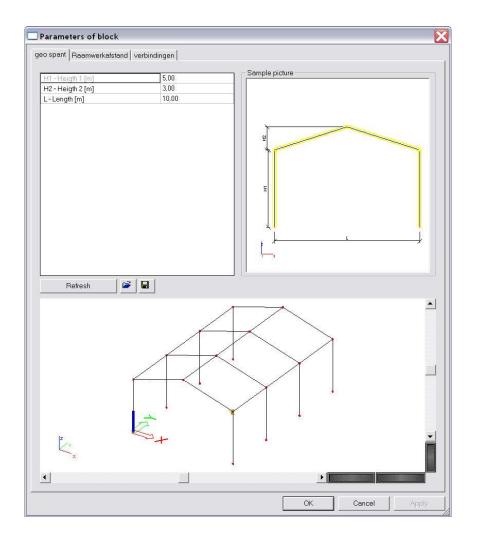
The projects in this user-created library are called **User blocks** and the library is called **User block library**.

We take example 8 again: Steel frame.esa

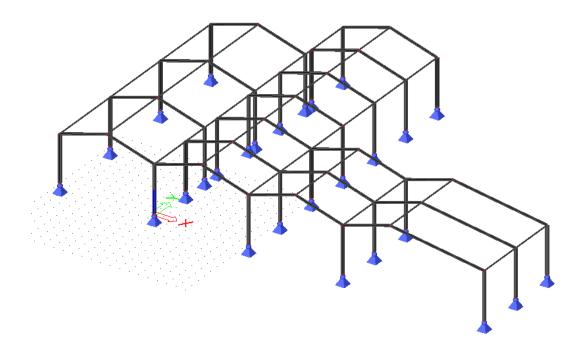

Save as user block: 'File > Save as ' and then save in the file userblocks.

You can find it in:

Options 🔀
Environment Templates Directories Other Protection Code
Program directories Show directories for:
User block libraries
Directories C\Documents and Settings\Astrid.SCIA-ONLINE\My Documents\ESA80\userbloc
Notice These settings cannot be edited while a project is opened.
OK Cancel Help


- Make a new project, e.g. in general XYZ
- Open the Structure menu :

🖮 🍱 Advanced Input


The following dialog boxes appear:

User blocks	
User library	Steel frame

Imp	oort user block		X
8	Setup Material		
	· · ·		
	Import type	Structure with all other data	
	Import structure into:	Current layer 🗾 💌	
	Load cases	Add block library item 💽	
	Cross-Sections	Add block library item 💽	
	Bolt assembly	Add block library item 🔹	
	Load groups	Add block library item 🔹	
	Others	Add block library item 🔹	

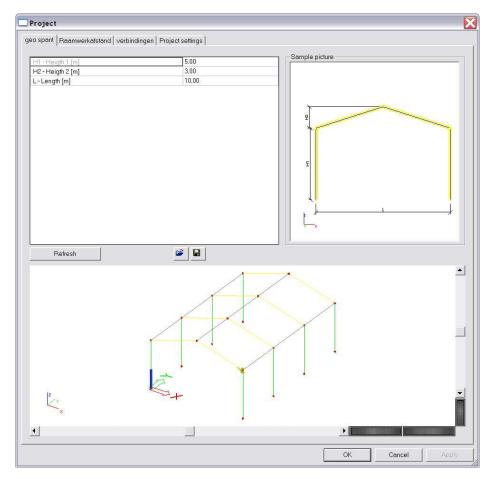
- Insert another user block
 - with NS = 3 -
 - frame distance = 8 and NS = 4 length L = 15 and NS = 3 -
 - -
- Here you can get the following example: ٠

Project templates

In practice it may quite often happen that some elements are used in every project. For example, material types, cross-sections, predefined loads, and even parts of a structure may be the same in various projects. Therefore, it would be efficient, if the user could store the repetitious elements aside and load them quickly into every new project.

In SCIA Engineer this may be achieved via templates. Generally speaking, a template is an ordinary project that holds required information and is saved in a special way.

Let's take example 8 again: Steel frame.esa


• Save as template: 'File > Save as' in the folder:

Options
Environment Templates Directories Other Protection Code
Program directories Show directories for:
User Templates
Directories 🔤 🗙 🛊 🗣
C:\Documents and Settings\Astrid.SCIA-ONLINE\My Documents\ESA80\template
Notice
These settings cannot be edited while a project is opened.
OK Cancel Help

• Close example 8 and open a new project. Go to the tab 'User templates'.

Select New Project				
New Project User templates				
C\Documents and Setlings\Astrid	beam with practical rei	ODA	Steel frame	Δ
	ОК	Cance		

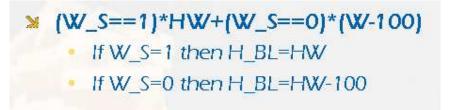
• When opening this template, also here a dialog box appears with possible parameters that can be adjusted:

General parameterizing

If you doubt if a certain property can be parameterized or not, it is advisable to create as many types of parameters as possible that can possibly be the required parameter.

Type of parameters:

Nothing	The parameter is not used.
Integer	The parameter is used as an integer.
Coefficient	The parameter is used as coefficient.
Length	The parameter is used for definition of length in the model.
Force	The parameter is used for definition of size of force load.
Moment	The parameter is used for definition of size of moment load.
Line load	The parameter is used for definition of size of line load.
Surface load	The parameter is used for definition of size of surface load.
Mass	The parameter is used for definition of size of masses.
Line mass	The parameter is used for definition of size of line masses.
Surface mass	The parameter is used for definition of size of surface masses.
Cross-section length	The parameter is used for definition of length at cross-sections.
Angle	The parameter is used for definition of angles.
Relative	The parameter is used for definition of relative values.
Cross-section rolled	The parameter is used for definition of cross-sections.
Library	This parameter type can be used with any "library" item, i.e. any item that is selected from one of ESA PT's internal databases, such a materials, cross-sections, subsoil, reinforcement pattern, etc.
Combination factor	Combination factors for load cases inserted into a combination.
Relati∨e humidity	applicable in the calculation of long term losses in prestress.
Time (history)	Time of individual construnction stages on time-line.
Stress	(i) Stress in concrete that can be defined in measured values when the Time Dependant Analysis is performed or
	(ii) the initial stress of the strands for a strand pattern.


Possible formulae:

+	Adds the given numbers / parameters	
中国信仰中国信和中国	Subtracts the given numbers / parameters	
*	Multiplies the given numbers / parameters	
I never never n	Divides the given numbers / parameters	
1	Modulo – gives the remainder after division of two numbers	
Λ	Raises the given number to a given power	
()	Putting individual members of the expression may change the priority of evaluation.	
sin(x)	Calculates the sine of parameter x	
cos(x)	Calculates the cosine of parameter ×	
tan(x)	Calculates the tangent of parameter ×	
tg(x)	THE REPORT OF THE PROPERTY AND ADDRESS OF	
arcsin(x)	Calculates the arcsine of parameter ×	
asin(x)		
arccos(x)	Calculates the arccosine of parameter x	
acos(x)		
arctan(x)	Calculates the arctangent of parameter $ imes$	
arctg(x)		
atan(x)		
atg(x)		
ln(x)	Calculates the natural logarithm of x.	
log(x)	Calculates log ₁₀ (×).	
exp(x)	Calculates the exponential e to the x-th power.	
sign(x)	Returns the sign of parameter x. Returns +1 for positive argument. Returns -1 for negative argument	
sgn(x)		

Possible operators in SCIA Engineer:

Example of a formula:

1000	H_BL
Type	Length
Description	Höhe Borlochprofil
Evaluation	Epmula
Fomula	(W_S==1)*HW+(W_S==0)*(HW-100)
Value (m)	
Use range	